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The method of product integration is applied to the vortex dynamics of two- 
dimensional incompressible viscous media. In the cases of both unbounded and 
bounded flows under the no-slip boundary condition, the analytic solutions of the 
Cauchy problem are obtained for the Helmholtz equation in the form of linear and 
nonlinear product integrals. The application of product integrals allows the 
generalization in a natural way of the vortex dynamics concept to the case of 
viscous flows. However, this new approach requires the reconsideration of some 
traditional notions of vortex dynamics. Two lengthscales are introduced in the form 
of a micro- and a macro-scale. Elementary ‘vortex objects’ are defined as two types of 
singular vortex filaments with equal but opposite intensities. The vorticity is considered 
as the macro-value proportional to the concentration of elementary vortex filaments 
inhabiting the micro-level. The vortex motion of a viscous medium is represented as the 
stochastic motion of an infinite set of elementary vortex filaments on the micro-level 
governed by the stochastic differential equations, where the stochastic velocity 
component of every filament simulates the viscous diffusion of vorticity, and the 
regular component is the macro-value induced according to the Biot-Savart law and 
simulates the convective transfer of vorticity. 

In flows with boundaries, the production of elementary vortex filaments at the 
boundary is introduced to satisfy the no-slip condition. This phenomenon is described 
by the application of the generalized Markov processes theory. The integral equation 
for the production intensity of elementary vortex filaments is derived and solved using 
the no-slip condition reformulated in terms of vorticity. Additional conditions on this 
intensity are determined to avoid the many-valuedness of the pressure in a multi- 
connected flow domain. This intensity depends on the vorticity in the flow and the 
boundary velocity at every time instant, together with boundary acceleration. 

As a result, the successive and accurate application of the product-integral method 
allows the study of vortex dynamics in a viscous fluid according to the concepts of 
Helmholtz and Kelvin. 

1. Introduction 
The foundations of the study of vortex motion in fluid flows were laid by Helmholtz 

(1858) and Lord Kelvin (1869). Their fundamental works were the origin of the vortex 
dynamics concept based on the physical representation of the fluid mechanics as vortex 
motion that determines all the physical characteristics of a flow. The rationality of this 
representation is completely demonstrated in models of perfect incompressible flows, 
where the vorticity evolution can be determined from the vorticity field itself in 
accordance with the Helmholtz and Kelvin theorems, and velocity and pressure fields 
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are found from the vortex motion. The description of the fluid mechanics in the 
framework of the vortex dynamics concept has a number of fundamental advantages 
as compared with the traditional description in velocity-pressure terms. First, the most 
fruitful ideas and theories in aerodynamics are mainly connected with the physical 
pattern of vortex motions. Therefore, the study of vortex field structures in real flows 
leads to a deeper comprehension of the nature of the physical phenomena, and may 
even, sometimes, lead to an explanation of them. This is convincingly demonstrated in 
the remarkable work of Batchelor (1973). Secondly, the vorticity distributions in flows 
of practical interest is often compact, whereas the velocity and pressure fields extend 
everywhere. Therefore, the flow description in vorticity terms requires less information, 
making vortex dynamics methods more effective. Finally, these vortex methods are 
more convenient and easy to use as they are based upon the Lagrangian representation 
of media motion. Modern computers allow these advantages of vortex techniques to 
be used effectively. It should be especially noted that the vortex method is one of the 
most effective computational techniques for fluid flow simulation. 

Vortex dynamics theory is a rapidly developing branch of fluid mechanics. 
Numerous analytic and numerical methods have now been created within the 
framework of this theory to calculate vortex motions in both inviscid and viscous 
media. A complete survey of the works in the field is outside the scope of this paper, 
and we merely indicate here the excellent surveys of Aref et al. (1988, 1989), Beale & 
Majda (1984), Hald (1991), Leonard (1980, 1985), Puckett (1991), Sarpkaya (1989) and 
Sethian (1991), where different approaches to vortex dynamics are analysed, and a vast 
bibliography is given. 

In spite of the considerable achievements in the field, there are a number of 
fundamental problems in the vortex dynamics of viscous flows which have not yet been 
satisfactorily solved. One fundamental problem concerns the generalization of the 
vortex dynamics concept of ideal flows to the viscous case. This problem arises because 
the vorticity diffusion and the boundary vorticity production violate the Helmholtz 
and Kelvin theorems and, therefore, the principal basis of the vortex dynamics concept 
vanishes. As a result, the problem arises of representing vorticity convection, diffusion 
and boundary production processes in a viscous fluid in terms of the motion of an 
infinite set of some ‘vortex objects’. 

There are both traditional analytical methods of mathematical physics and numerical 
methods of solving the Helmholtz equation, such as finite and boundary element 
techniques and finite difference methods (see Norrie & de Vries 1978; Thompson 
& Wu 1973) that do not require describing viscous fluid motion in the framework of 
the vortex dynamic concept. In these methods, the Lagrangian approach is not used; 
here, the vorticity is not represented in the form of a set of vortex objects, but rather 
is considered as some unknown variable which has to be determined from the 
Helmholtz equation. Note, however, that the traditional methods of mathematical 
physics unfortunately permit the solution of the problem only when the flow studied 
has high degree of the symmetry such that separation of variables is possible in the 
equation. Besides, none of these methods of solving the Helmholtz equation in vorticity 
terms has any obvious advantages over analogous techniques where the Navier-Stokes 
equations are solved in the velocity-pressure variables. Moreover, there are some 
difficulties in formulating the boundary condition on the vorticity magnitude in viscous 
flows. Therefore, additional problems arise in the application of such approaches in 
satisfying the no-slip condition in the vorticity terms. 

In the past two decades many different numerical methods have been proposed for 
computing the vortex motion of an incompressible viscous fluid in the limits of the 



Vortex dynamics of viscousJuidJows. Part 1 83 

vortex dynamics concept. Among those there are, however, methods which do not give 
the exact problem solution, as the viscosity effect is taken into consideration only 
approximately, for instance Ashurst’s (1979) technique, where the diffusion is taken 
into account by exponential spreading in time of vortex cores. This method has 
limited application (see Greengard 1985). 

Most progress in the solving of this problem was achieved in the computational 
technique of random walks based on Chorin’s works (1973, 1978, 1980, 1982). The 
fundamental physical idea of this technique consists in the vorticity diffusion process 
being simulated by random walks added to the usual inviscid regular motion of 
vortices. Marchioro & Pulvirenty (1982) first gave the correct theoretical basis for 
applying the random walks to simulating solutions for the vortex dynamics equations 
in a viscous fluid. First, they showed that the quasi-linear Helmholtz equation can be 
interpreted as the forward Kolmogorov equation for some stochastic process of vortex 
blob motion which is constructed by the standard procedure of successive 
approximations as the limit of processes involving the linearized Helmholtz equation. 
Secondly, using the ‘propagation of chaos’ representation (see McKean 1969), the 
authors showed that a solution of the Helmholtz equation can be represented through 
the stochastic motions of an infinite set of vortex blobs. A more detailed description 
of the random walks method including its foundations and a vast bibliography is 
contained in Puckett (1991). 

Nevertheless, the random walks method has some fundamental shortcomings. 
Milinazzo & Saffman (1977) showed that this method requires a considerable number 
of vortices, N -  Re, to simulate viscous flows correctly. Besides, there are some 
difficulties in satisfying the no-slip boundary condition. For example, the boundary- 
layer equations, which are not valid in the vicinity of a flow separation, have 
additionally to be solved to describe vortex production on boundaries. A more detailed 
criticism of this method can be found in Sarpkaya (1989). Hence, we can say with 
confidence that the analytic theory of the vortex dynamics of a viscous fluid is not yet 
formulated. The existence of such a theory would allow well grounded and effective 
calculation techniques to be created. 

Meanwhile, the method of product integration has been widely developed in 
different domains of physics. This method is mainly used to study physical phenomena 
governed by partial differential equations of parabolic type. The path integral (product 
integral) was first introduced by Wiener in 1923 to solve linear Brownian motion 
problems. Later, Feynman introduced the continual integral notion, a complex version 
of the path integral, to solve Schrodinger’s linear equation (see Feynman & Hibbs 
1965). In recent years this method has been generalized to the solution of quasi-linear 
equations. The nonlinear version of the product integral was introduced by Maslov 
(1976) to solve the nonlinear Schrodinger equation, and the asymptotic technique for 
this integral evaluation was also worked out by him. Product integration is now a 
branch of mathematics that has found principal application in quantum theory, 
statistical physics, and the examination of wave propagation in random media, and is 
spreading to other fields of physics. Asymptotic and numerical methods have been 
worked out to evaluate these integrals. Unfortunately, this method has not been 
applied to fluid mechanics, apart from the sole case of the application of product 
integrals to solve the Hopf functional equation in turbulence theory. A complete 
account and vast bibliography on this subject can be found in the monograph of 
Monin & Yaglom (1975). 

The purpose of the present work is the construction of the analytic vortex dynamics 
theory of an incompressible viscous fluid on the basis of the product-integral method. 
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We intend to obtain the analytic solution of the Cauchy problem for the Helmholtz 
equation satisfying the no-slip condition on the boundaries in the form of a nonlinear 
product integral. The possibility of applying this approach arises from the parabolicity 
of the Helmholtz equation in a viscous fluid. The harmonic connection between 
product integration and continual Markov processes (the product integral expresses 
the mean value of a functional over some Markov process) allows these examinations 
to be carried out in the framework of the vortex dynamics concept. Moreover, one can 
follow the traditional vortex dynamics formulation : a vorticity field is represented in 
the form of a set of some vortex objects, and their laws of motion are assigned so 
that the dynamics of the vortices satisfies the Helmholtz equation. From our point of 
view such an approach is well grounded and clear from a physical standpoint. 

In this addition, the product-integral method requires the motion of the vortex 
objects be guided by some Markov process. One can perceive here that some 
constructions in the method developed are analogous to those of Chorin. Indeed, our 
study uses some ideas from the numerical random walks method. However, there are 
some principal differences between these two methods because the application of the 
product-integral method to vortex dynamics requires reconsideration of the notion of 
stochastic vortex objects and ways of formulating their motion laws. Also these 
examinations will use some recent results in product integration theory, in particular 
the new way of satisfying the boundary conditions. Therefore, we give in 92 a general 
introduction to the application of product integration and the necessary bibliography, 
discussing the specific problems arising in solving the problem formulated here. 

In 93 a concrete model of the vortex dynamics of two-dimensional fluid flows is 
constructed on the base of the principles formulated in $2. Using this model, the 
Cauchy problem for the Helmholtz equation is solved, first in 94 for the case of 
unbounded flows using both linear and nonlinear forms of product integrals, and 
second in 95  for flows with arbitrary moving boundaries under the no-slip condition 
in the form of a nonlinear product integral. 

This work generalizes the authors’ previous work (Ostrikov & Zhmulin 1991). 

2. The application of the product-integral method to viscous vortex 
dynamics : reasons, reconsideration of concept and physical pattern 

This Section is devoted to some general questions. First, we shall outline the 
application of the product-integral method (PIM) to vortex dynamics in a viscous fluid 
and show that it is the most natural means of generalizing the vortex dynamics concept 
of ideal fluids to viscous fluids. Secondly, the general theses of RIM are formulated and 
the specific problems that occur in the application of PIM to viscous vortex dynamics 
are discussed. Overall, this Section gives a basis for revising some fundamental notions 
in viscous vortex dynamics and outlines ways of solving a problem by using PIM. We 
consider here both two- and three-dimensional flows, though the practical PIM 
application to the three-dimensional case will be done in a future paper (Part 2). 

The evolution of vorticity in an incompressible viscous fluid is governed by 

aa 
- + ( u * V )  0 - (0. V) u = vAQ, 
a t  

v * u  = 0, 

a = v x u ,  
4 s  = u s ,  
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where (2.4) is the no-slip condition on the boundaries moving with a given velocity us. 
Equations (2.2) and (2.3) allow the velocity field of a flow to be determined from the 

vorticity through the Biot-Savart law 

Here, the harmonic function, $ determines a potential flow added to satisfy the 
boundary condition and can be expressed through the vorticity in a flow. After 
substituting (2.5) into (2.1) the Helmholtz equation becomes a quasi-linear one of 
parabolic type, related to the vorticity only. 

The initial Cauchy problem is formulated for this equation; the vorticity evolution 
O(x, t )  is to be determined when the initial vorticity O,(x) is given at the time to. 

2.1. Characteristics of the vortex dynamics concept in a viscous fluid 

In an inviscid flow, when v = 0, the right-hand side of (2.1) vanishes, and the vorticity 
evolution satisfies the Helmholtz and Kelvin theorems : vortex lines are material ones 
and the intensity of vortex tubes is maintained in time. The vortex dynamics of an ideal 
fluid is based on these theorems and can be described as the evolution of some 
deterministic objects in the form of vortices. This representation of ideal fluid flow 
is called the vortex dynamics concept. To apply this concept, two correlated problems 
have to be solved: 

(i) to represent the vorticity field as a set of vortex objects, each of which induces 
a velocity field according to the Biot-Savart law, 

(ii) to define the laws of motion of the vortex objects in the form of a set of 
differential equations. 

In ideal-fluid models the vorticity field is usually represented in the form of a set of 
&shape vortices, such as vortex filaments, vortons, vortex dipoles or regularized 
vortices in the form of thin vortex tubes or vortex blobs. The derivation of differential 
equations describing the motion of such vortex objects is based on the property of 
vortex lines being liquid, and the motion of every vortex object is, therefore, considered 
to be caused by the velocity induced by the rest of the vortices according to the 
Biot-Savart law. In the three-dimensional case, additional equations are constructed 
for the intensity of %shaped vortices or vortex blobs to describe the stretching effect 
of vortex tubes. 

Unlike inviscid models, where only the convective transfer of vortices is considered, 
in viscous flows there are three correlated processes: convection, diffusion and the 
production of the vorticity. Vorticity diffusion process arises from molecular transfer 
between liquid particles. The vortex production process arises from the no-slip 
condition (2.4) on boundaries and can be explained as follows. If in an inviscid fluid 
the potential $ in (2.5) is determined under the no-flow boundary condition, 
(u- u,).nl, = 0, for any vorticity in a flow, then in a viscous fluid this potential cannot 
be found for arbitrary vorticity to satisfy (2.4). Therefore, in the viscous case, some 
vorticity quantity must be produced on the boundaries at every instant of time in order 
for this potential to be determined. 

The appearance of these additional processes in a viscous flow creates the principal 
difficulties in the application the vortex dynamics concept. Owing to vorticity diffusion 
and boundary production, the Helmholtz and Kelvin theorems are not applicable and 
so the vortex lines are not material ones and the vortex tube intensities are not 
maintained. Nevertheless, vorticity production can be described as a production 
process of deterministic vortex objects by analogy, for instance, with the simulation 
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of separated ideal flows. On the other hand, the diffusion process cannot be described 
by the techniques used in inviscid flows. Indeed, when a local vortex arises in a viscous 
flow as a hydrodynamic object, it diffuses immediately, producing a vorticity field in 
the whole flow field. Therefore, it is difficult to represent vortex motion in the form of 
movements of deterministic vortex objects guided by some differential equations. 

To overcome these difficulties and contradictions, the mathematical model has to 
permit the diffusion to be described in terms of the motion of some deterministic 
objects, with an adequate description of the convection and production phenomena. 
So far, the theory of continuous Markov processes with PIM, correlated with this 
theory, is the only way to solve this problem. 

2.2. The product-integral method as a way of describing diffusion phenomena 

The continuous Markov processes theory has been developed from works on Brownian 
motion (see Einstein 1956). These works gave rise to the method in which diffusion 
phenomena are studied by the description and examination of diffusing particle 
motions. This method has been successfully applied to many different domains of 
physics (see Van Kampen 1984). 

From the mathematical standpoint the harmonic connection between continuous 
Markov processes and solutions of linear partial equations of parabolic type was 
discovered by Kolmogorov (1931). Later, this result was generalized on the case of 
quasi-linear equations of this type (see Freidlin 1967). Wiener (1923) introduced the 
path integral (product integral) as one over the functional space containing all possible 
paths of some continuous Markov process, and this was the origin of the effective 
analytic method of examination of both linear and quasi-linear parabolic equations. 
The main information on the product integral theory can be obtained in the works 
of Albeverio & Hoegh-Krohn (1976), Daletsky (1962), Dynkin (1965), Egorov, 
Sobolevsky & Yanovich (1983), Feynman & Hibbs (1965), Maslov (1976) and 
Freidlin (1985). 

To solve the Cauchy problem analytically for any equation of parabolic type in the 
framework of this theory, the following steps are used (see figure 1). First, the 
continuous Markov process is constructed using stochastic differential equations and 
the introduction of the production and disappearance of stochastic objects. The value 
of this construction is in the possibility of interpreting the initial partial equation as 
a forward Kolmogorov’s one. Finally, the Cauchy problem is solved for the initial 
equation by calculating the mean value of the special functional over the constructed 
Markov process in the form of the product integral. 

The main physical characteristic of the diffusion process is here the transition 
probability density p ( x ,  t ,  y ,  T )  defined as the probability that diffusion objects move to 
the position x at time t ,  if they start out from position y at time T .  The problem of the 
analytic determination of this probability density is solved by PIM. The product 
integral is here interpreted as the sum of contributions to p(x, t ,  y ,  T )  from all possible 
trajectories of diffusion objects moving to point x from y during the time interval [T, t]. 

Particular attention should be paid to the peculiarity of the physics of the diffusion 
phenomena, which arises because the forward Kolmogorov equation is written with 
respect to functions which are usually, in some sense, proportional to the 
concentrations of diffusing objects. For example, the Brownian diffusion equation 
describes the concentration directly. In the heat-transfer process the temperature is 
determined through the Boltzman function which determines the concentration of the 
molecules. Moreover, there are two characteristic lengthscales in diffusion phenomena : 
the motion of diffusing objects occurs, as a rule, on the micro-level, while the diffusion 
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Volume disappearance or 
production of stochastic 

objects with the 

The Cauchy problem for the quasi-linear 
parabolic equation 

+V* (uN) ~ cN= vA N I at 

probability density 
4 x 3  t )  

I The interpretation of initial equation as the forward 
Kolmogorov one for the continuous Markov process I 

I The solution of the problem in the form of the product integral I 
I I 

FIGURE 1. A schematic of the Cauchy problem solution for parabolic-type equations, describing some 
diffusion process N(x,  t )  by the continuous Markov process theory, where u(x, t )  is the convective 
velocity of diffusing objects motion, c(x, t )  > 0 is the probability density of diffusing objects 
disappearance, and c(x, t )  < 0 is that of their production, v is the diffusion coefficient, and C(t) is white 
noises. The terms u(x, t )  and c(x, t )  depend on N(x,  t )  for the quasi-linear case. 

process itself is manifested on the macro-level. Therefore, the convective velocity and 
the probability density of the production or disappearance of diffusing objects are 
macro-level characteristics in the Kolmogorov equation. This fundamentally influences 
the construction of stochastic equations, their physical interpretation and the 
interpretation of solutions written in the form of product integrals. 

The appearance of boundaries in the diffusion process can lead to additional 
physical phenomena, such as absorption, production, reflection and passing through a 
boundary of diffusing objects. These phenomena change the transition probability 
density of the continuous Markov process. In order to apply PIM effectively for the 
description of such boundary phenomena, it is convenient to apply the theory of 
generalized Markov processes developed by Portenko (1982). In this method the 
stochastic process is continued outside the domain studied, and the Kolmogorov 
equation is different to that drawn on figure 1 in the a-neighbourhood of the 
boundaries as follows : 

(2.6) 
aN -+ V - ( ( U  + a,) N )  - (c+ c,) N = VAN+ q,, 
at 

where u, is the additional convective velocity, c, is the additional probability density of 
the production or disappearance of objects, and q, is the intensity of the objects' 
ejection. The support of u,, c, and q, is the s-neighbourhood of boundaries. Equation 
(2.6) can be solved by the standard PIM drawn in the figure 1. Choosing the quantities 
u,, c, and q, within the a-layer, one can describe a broad class of boundary phenomena. 
In the limit as e+O, the solution of an initial problem can be obtained in the form of 
the product integral. 

The parabolic type of the quasi-linear Helmholtz equation (2.1) suggested to us the 
idea of applying PIM to describe the vortex dynamics in a viscous fluid. Clearly, the 
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stochastic process, constructed for applying PIM to solving the Helmholtz equation, 
can be interpreted as the stochastic process of the motion of some vortex objects. 
Thus, using PIM allows the vortex dynamics concept to be generalized to viscous fluid 
because the latter can be represented in the form of the motion some deterministic 
objects guided by some equations. Unlike an ideal fluid, those equations will be 
stochastic ones determining some continuous Markov process. As a result, the 
deterministic description of vortex trajectories is unable to describe viscous vortex 
dynamics within the framework of the vortex dynamics concept. The main 
characteristic of viscous vortex motion becomes the transition probability density 
p(x ,  t ,  y ,  r) ,  and the principal problem of the viscous model construction consists in the 
determination of this probability density so that the vorticity a(x, t ) ,  arising as a result 
of the stochastic motion of vortex objects, would satisfy (2.1). Note that this 
inapplicability of deterministic approach is analogous to that when the transition to 
quantum from classical mechanics is made in Feynman's interpretation (Feynman & 
Hibbs 1965). However, there is no more profound analogy here because there is a 
difference between the nature of stochastical properties of these phenomena. 

Note that the numerical random walks method of Chorin, mentioned in $ I ,  is based 
on this idea. However, the particular version of the stochastic processes, constructed 
in this method, cannot be applied to PIM for analytical solutions of the problem. The 
reason for this will be considered in the next Section. 

2.3. The main problems of the application of PIM to viscous vortex dynamics 
In order to apply PIM to viscous models, first the two problems (i) and (ii) given in $2.1 
have to be solved to construct the stochastic process and to give its physical 
interpretation. In this case, the correctness criterion for solving these two problems is 
whether the Helmholtz equation can be interpreted as the forward Kolmogorov one 
for the Markov process constructed. The quasi-linearity of the Helmholtz equation 
causes difficulties in the realization of this programme. It appears that representing the 
vorticity field in the form of a set of vortex objects, as used in ideal flow models, is 
not possible in the application of PIM to viscous flow. We intend to clear up this basic 
problem using the example of two-dimensional flows. 

First, consider representing the vortex field in the form of a set of vortex filaments 
to solve the problem discussed. In order to do this, the whole vorticity field Q(xj is 
divided into small cells AS,. Then one vortex filament of intensity 4 = Q(xi)ASi is 
placed in the centre of each cell xi, and the vorticity field will approximately be 

Q(x) M crJ(x-xi). 
i 

Relation (2.7) becomes precise in the limit ASi + 0 and gives a representation of the 
vorticity field as an infinite set of vortex filaments. The motions of the vortex filaments 
have to be given in the form of stochastic differential equations which can be reduced 
to ideal ones, as v = 0. Therefore, these equations can be written in the form 

where the Ci(t) are independent white noise so that the 
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are independent Gaussian random values with zero mean and variance 2vt. In this case, 
the vorticity field in a viscous fluid is determined by averaging (2.7) over all realizations 
of (2.8) as 

where E is the mean value. If we use PIM to calculate this mathematical expectation, 
we then obtain a further equation for Q(x, t ) :  

~- as2(xy t, vA Q(x, t )  = - V ; E [ ~ ~ u i ( x ) S ( x - x i ( t ) ) ] .  
at i 

(2.10) 

Here, the velocity ui(x) is given by the first term on the right-hand side of (2.8) in which 
x replaces xi .  

It is seen from (2.10) that the convective term on the right-hand side does not have 
the form of one in the Helmholtz equation (2.1) because the velocity ui(x) depends on 
the coordinates of all vortex filaments and cannot be independent of the sign of the 
mean value. Thus, this approach fails in the simulation of vorticity convection, though 
diffusion is described correctly. The main reason for this is due to incorrectly taking 
into account the quasi-linearity of the Helmholtz equation in the stochastic process 
construction. Nevertheless, this approach can be applied to simulate flows app- 
roximately when the nonlinear interactions between vortices can be neglected. In such 
flows, the velocity ui(x)  does not depend on the vortices coordinates being one of the 
main flow and can be independent of the sign of the mean value that reduces (2.10) to 
the Helmholtz equation. 

Consider now the vorticity field representation in the form of a set of vortex blobs. 
It is this representation that is used in Chorin’s numerical method and it is standard 
in inviscid models also. In this technique, the vorticity is represented in the form (2.7) 
also, but some regularization function f,(lx-xil) replaces the Dirac delta. In the 
physical sense it means that a vortex of small radius c is placed at the centre of each 
cell instead of a point vortex. The continuous Markov process is here constructed 
analogously to the previous case. Marchioro & Pulvirenty (1982) proved that such a 
numerical procedure converges to solutions for the Helmholtz equation under the 
condition c > h only, where h is a characteristic distance between blobs. This condition 
is necessary in order that a great number of vortex blobs could overlap each other, and 
the law of great numbers could be applied to calculate the sum on the right-hand side 
of (2.10), modified for the case of vortex blobs, at every realization of the stochastic 
process. Esposito & Pulvirenty (1989) generalized this result to the three-dimensional 
case. However, the condition of the ‘overlapping’ of vortex blobs contradicts the initial 
representation of a vorticity field when each vortex cell contains one vortex blob so that 
‘overlapping’ is not considered. Because of this contradiction, Sarpkaya (1989) found 
this method inadequate in the physical interpretation of the vorticity diffusion process. 
Indeed, it is difficult to give a physical significance to the parameter r for ‘overlapping’ 
vortex blobs. Furthermore, the existence of this parameter and the functionf,(lx - x i / )  
creates fundamental difficulties in the product integral construction. The last 
circumstance is of most importance for us. 

2.4. Vortex object: reconsideration of the concept 
The discussion in the previous Section shows that the standard representation of the 
vorticity field as a set of vortex objects must be changed to apply PIM to an analytic 
description of the vortex dynamics in a viscous fluid. PIM application requires that the 



90 N ,  N .  Ostrikov and E. M .  Zhmulin 

Helmholtz equation (2. I)  is to be interpreted as the forward Kolmogorov equation for 
some Markov process. Therefore, it would be natural to use the physical representation 
when Kolmogorov’s equation describes the magnitude to be proportional to the 
concentration of diffusing objects, as is usual for the physics of diffusion phenomena 
(see 52.2). It is just this standpoint that we develop in this work. 

Consider now the main physical demands which are to be satisfied in constructing 
the viscous vortex model. First, the vorticity field must be represented as proportional to 
the concentration of some elementary vortex objects. In this representation two 
lengthscales are used : micro- and macro-scales. The physical significance is that 
elementary vortex objects inhabit the micro-level, while the vorticity field is macro- 
level magnitude. Note that &shaped vortex objects can be used as elementary ones 
in spite of change of vortex field representation. Secondly, the motion of these vortex 
objects has to be given by stochastic differential equations of the form (2.8). 
However, the convective term in these equations must be assigned at the macro-level 
value. It can be obtained by calculating the main part from the convective velocity 
in (2.8) with respect to the small parameter of micro-level. As a result, all elementary 
vortices would have the same convective motion, if they are placed at given macro- 
point and at some instant of time. This characteristic feature confirms the statistical 
independence of the motion of different elementary vortices at every small time interval 
and allows the quasi-linearity of the Helmholtz equation to be accounted for correctly. 
Third, the volume production or disappearance of elementary vortex objects is 
possible in the three-dimensional case when the Helmholtz equation has a term (nV) u 
analogous to the term cN in the equation drawn on figure 1 having a corresponding 
interpretation. All characteristics, both volume and surface production, of elementary 
vortex objects must be assigned macro-values also. 

Finally, the physical pattern of a viscous fluid flow arises. Elementary vortex objects 
move stochastically by analogy with the molecules on the micro-level, but a 
hydrodynamical flow develops on the macro-level as a result of the instantaneous 
average of the micro-level characteristics. In this connection, the vorticity diffusion 
phenomenon is the result of random walks of elementary vortices, while convection is 
their regular displacement against the background of random walks. 

This vorticity field representation is radically different to its generally accepted 
notion in ideal fluid models, and the physical interpretation of an elementary vortex 
object is the natural problem. Indeed, elementary vortex objects are not the 
hydrodynamical ones, as is seen from the construction of an elementary vorton which 
does not have its own flow, but it is their set that characterizes the fluid motion. The 
authors have assumed from the beginning of this investigation that elementary vortex 
objects are quasi-particles analogous to those studied in the many-body problem (see 
Muttuck 1967). More exactly, every elementary vortex object is a quasi-particle 
appearing as a result of collecting a great number of molecules. However, this quantity 
must not be too big, otherwise this quasi-particle would become a hydrodynamical 
object and its motion would not be guided by stochastic laws usually applied to 
molecular motion. On the other hand, the number of molecules has to be big enough 
in order that the law of large numbers allows the molecular chaos to be averaged, and 
the Gaussian law to be applied to the motion of elementary vortex objects. It is seen 
from this that the physical significance of the micro-scale in the vortex field representa- 
tion is some intermediate scale between the free path of molecules and the macro-scale, 
determining the flow. Note that the quasi-particle notion correlates with PIM, as is 
clearly demonstrated by Muttuck (1967). However, the evidence for this point of 
view can be confirmed by deeper investigations of kinetic theory, which is outside the 
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scope of this work. Nevertheless, this hypothesis gave us good intuitive grounds for 
formulating the heuristic assumptions in the mathematical model construction. 

3. Two-dimensional viscous fluid flows : principal definitions 

principles and by the techniques established in 92. 
The problem of the vorticity evolution will now be examined according to the 

The vortex dynamics of two-dimensional viscous incompressible flows is governed 

asz 
-+(u*V)O = uAO, (3.1) at 

v - u  = 0, ( 3 4  
(3.3) 

uIs = v,. (3-4) 

by 

Oe, = V x u, 

The task is to solve Cauchy problem for the Helmholtz equation (3.1), when the 
vorticity Oo(x), compatible with the condition (3.4), is given at initial time to. 

3.1. Dejinition of elementary vortex objects 
The problem is to define a set of simple stochastic vortex objects, the motions of which 
simulate the solution of equations (3.1)-(3.3). Introduce two types of elementary vortex 
filaments (EVFs) with intensities y+ = yo and y- = -yo, where yo is small positive 
number. Every EVF has vorticity of the form 

and induces a velocity field 
O(x) = y+6(x-xo)  

y+ e, x (x-xo) 
u(x)  = - 

2.n Ix-xo12 ' 

where x, is the EVF's coordinate. Consider that N = Nf + N - ,  EVFs of both types are 
concentrated in some domain B with the lengthscale L, and the distance between EVFs 
is of order E 4 L. Then N - L2/e2.  Let the domain B be divided into A4 cells 
B, (B  = B,) having area AS, and characteristic lengthscale dof order E < d < L (see 
figure 2). We introduce the index sets J k  of EVF numbers. Denote the numbers of 
corresponding EVFs placed in cell B, as J:, and J ,  = J,' u J;. If the number of EVFs 
of corresponding types in the cell B, is N:, then N: - d2/e2.  Also, we assume that 
yo N re2/L2,  where r is the intensity of the whole vortical domain B. In this case, the 
total vorticity can be represented in the form 

O(x) = c y+6(x-xXi)+ c y-C?(x-x,), 
i E  J c  t € J -  

(3.5) 

where xi  is the coordinate of ith vortex filament. 
Transform (3.5) in such a way as to express the vorticity O(x) through the 

concentration of EVFs and, therefore, write the relation (3.5) in the form of the sum 
of sums over each cell as 

O(x) = c x y+6(x-xt)+ 2 y-6(x-x,) . (3.6) 
a=l M (  i c J :  t € J ,  1 

The coordinate of the kth EVF can be written as the sum of two terms 

xk = Xa(k)  + C k y  (3.7) 
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Y 

x 

FIGURE 2. Two independent types of EVF motion from cell a at time step A t :  (a) the general 
convective transfer of an EVF by the same velocity (b) individual random walks ( 2 ~ ) ~ ’ ~ 7 J A t )  of 
Gaussian form; e is a characteristic distance between EVFs and d is the characteristic lengthscale of 
a cell. 

where x,(,) is the coordinate of the ‘centre of gravity’ of the cell B,, in which the kth 
EVF is placed. The EVF coordinate inside the cell is I<,! d d.  As d < L, we can use the 
expansion 

Substituting (3.8) with (3.7) into (3.6), we obtain 
M 

Q(x) = C y O ( N , + - N Z ) 8 ( x - ~ J + O ( d ) .  
,=l 

(3.8) 

(3.9) 

Let us introduce the notation N,‘ = N+(x, )  AS,, where N+(x,,) is the concentration of 
EVFs of each type in cell B,. Then, it is obvious, that N+(x,) - e-’. Taking into account 
this notation, (3.9), in the limit as e + 0, d-t  0, and eld+ 0, can be written as 

Q(4 = y,(N+oI) - N-(Y)) 6(x - Y )  dY = YO(N+( - N-(x)) .  (3.10) s, 
Note, that Q(x) = O(1) due to the definitions of yo and N+(.x). 

Thus, in this case, the EVFs are determined so that the vorticity magnitude is 
proportional to their concentrations. This definition contains the idea of the existence 
of two incommensurate lengthscales, namely the micro-scale e characterizing the 
disposition of EVFs, and the macro-scale L characterizing the vorticity domain. The 
macro-level’s quantitative characteristics are determined in this approach as a result of 
calculating the principal part with respect to e and d from the corresponding micro- 
level ones. The velocity field, for example, induced on the micro-level at the point of 
the kth vortex filament by the set of EVFs, can be determined as 

(3.1 1) 
i + k  

When calculations, analogous to those used to obtain (3.10),, are made the principal 
part of (3.11) with respect to e and d will be 
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where lw(xk)l is of O(d)  from the magnitude of the first term in (3.12). Under the 
conditions 6 + 0, d + 0 (E/d+ 0), this first term transforms into the well-known 

(3.13) 

3.2. The laws of vortex$lament motion 
The stochastic differential equations of EVF motion can be written in the form 

(3.14) 

Here the number of EVFs of each type N i  in the cell B, is connected with the 
coordinates of the EVFs by the correlation 

(3.15) 

where xp(x) is the characteristic function of the cell B,, and xi(t) is the path of the ith 
vortex filament. The white noises &(t) in (3.14) are statistically independent so that the 
random values s C k ( 4  d7 

0 

are the standard Wiener processes with variance 2vt. 
The stochastic differential equations (3.14) determine the continuous Markov 

process in space R2N.  The peculiarity of the motion law (3.14) is that each EVF is 
moved not by the velocity field (3.1 1) induced by the rest vortices, but by the principal 
part of velocity field (3.12) only, that is the macro-velocity. From (3.12) it follows that 
all EVFs placed in some cell have the same convective velocity apart from their micro- 
displacements inside each cell, and so the motion of different EVFs is statistically 
independent in a small time interval. 

3.3. Interpretation of the Helmholtz equation as the forward Kolmogorov equation 
We now demonstrate that the vorticity evolution based on the previous definitions is 
in agreement with the Helmholtz equation (3.1). We denote 

X =  ( X I ) ,  .-("I"), & =  ( ; ) ,  T l ( 0  

X N  %N) 5"t) 

(3.16) 

where u, is the macro-velocity in cell B,, which is given by the first term in (3.14). 
Considering an arbitrary realization of the random process (3.14), we shall 

determine the evolution of the number of EVFs, N:(t), within some fixed cell B,. This 
random quantity is given by relation (3.15) defining the so-called Smoluchovsky 
process (Kac 1957). If N:(t) EVFs of both types are placed within each cell B, at time 
t ,  then this number can be determined at time t + At as 

N,'(t+At) = 2 X,(xk(t+At)). (3.17) 
k c J i  

The coordinates of EVFs at time t + At are determined from (3.14) as 

xk(t + At) = Xk(t) + u , ( ~ )  At + (2v)'"qk(At) + o(At), (3.18) 

where qk(At) are the statistically independent random values of the Gaussian law with 

4 F L M  216 
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mean zero and variance 2vt. The motion law (3.18) is illustrated in figure 2. 
Representing (3.17) as the sum of sums over each cell Bp, we obtain 
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M 

N:(t+At)  = C C Xa(xk(t)+up(t)At+(2v)1’2qk(At)), (3.19) 
p=1 k E J i ( t )  

where J i ( t )  are the index sets of EVF numbers placed within the cell Bp at time t .  
The collection of random numbers (qk(At) )kEJg( t )  is a series of identical and 

independent samples. Let QAs(r) be the number of the vector extremities qk(Ac) in given 
series that find themselves within the small area AS, the centre of which is denoted by 
the vector r .  This quantity can be represented in the form 

Q ~ d r )  = C X A A ~ ~ J A C ) ) ,  

where xAS(r) is the characteristic function of the area AS. Evidently, this quantity is a 
random value also and depends on the number of samples in the series. Note that if the 
number N; is large enough, then the quantity QAs(r) can be written according to the 
law of large numbers as 

QAs(r) = Ni(C)a+(Ni(t))1/2aoZp(Ni), (3.20) 

where a is the mean value of the random value xA,(qk(At)), a. is its variance. By virtue 
of the Gaussian law of distribution of each value qk(At) with mean zero, variance 2vt 
and small area AS (AS < vAt), then a and go are determined by 

k e  J g ( t )  

exp (- lrI2/4v At)  AS,  a 6 1, 
1 

a%- 
47cu At 

(3.21 a) 

g: = a(l  -a) z a. (3.21 b) 

The distribution function of the random value Zp(N$) has approximately the Gaussian 
form 

(3.22) 

Let us determine the inner sum in (3.19) for given p, which allows us to find the 
number of EVFs passing from cell Bp into cell B, during time Ac. This quantity is equal 
to QA,  (x , -xp-uf l ( t )  At) with an accuracy of O(At)  and O(d)  because the velocity up(t) 
of all fiVFs in cell Bp at time t is identical. Thus, the sum (3.19) can be written in the 
form 

N:(t+At)  = C QAS,(x,-xp-up(t)At). (3.23) 
M 

fl=1 

Substituting (3.20) and (3.21) into (3.23), we obtain 

I x , - x  -U (t)AtI2 ivAr 
where the random function Z + ( A t )  - is expressed by 

Expressing N i ( t )  through the concentrations, N g ( t )  = N+(xp,  t)AS,, in (3.24) and 
(3.25), we obtain the next relation in the main approximation with respect to d and e: 
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where u ( y , t )  is given by (3.13). Using (3.10), we find from (3.26) that the vorticity 
variation in a given realization of the process during time At is 

Q(y7 t ,  dy + 7 0  z ( A t ) 7  (3'27) 
exp [ - Ix - y  - u(y, t )  AtI2/4v At] 

4nv At 
Q(x, t + At) = 

where Z(At)  = Z+(At) - Z-(At).  The integral in (3.27) can be expanded by the Laplace 
method (see Dynkin 1965) into a series with respect to time step At as 

Q(x, t )  + At( - V -  (u(x, t )  Q(x, t ) )  + v AQ(x, t ) )  + o(At). (3.28) 

Therefore, (3.27) can be written correct to the terms of first-order relative to the time 
step At as follows: 

Q(x , t+At )  = Q(x, t )+At ( -V*(u(x ,  t ) Q ( x , t ) ) + v A Q ( x ,  t ) )+yoZ(At ) .  (3.29) 

Relation (3.29) determines the vorticity evolution during one realization of the 
motion process (3.14). The vorticity in (3.29) is a random value because the trajectory 
xt in space R2N is a random one. This fact is taken into account in (3.29) by the random 
function yo Z(At),  and, therefore, this equation is interpreted as stochastic one. 
However, the function yo Z(At)  has approximately a Gaussian distribution with 
variance estimated by (3.22) and (3.25) as 

The role of the random factor vanishes under the condition c/d+O, when N+m, 
c + 0. In other words, the last stochastic term in (3.29) is negligible when c /d+  0, and 
the first regular one determines the vorticity evolution. Thus, the vorticity evolution 
follows the Helmholtz equation (3.1) in every realization of the random process under 
the above condition, and we have proved that the definitions of $6 3.1 an 3.2 lead to the 
correct simulation of the Helmholtz equation by the continuous Markov process. It 
should be noted that that we have used here the limiting process E --f 0 and d +  0 under 
the condition c /d+  0 before the limit At --f 0. It is this order of limiting processes that 
allows us to introduce correctly the micro-level with infinite number of EVFs in a flow. 

4. Two-dimensional flows of a viscous fluid in unbounded space 
Here, we shall determine the general solution to the Cauchy problem for the 

Helmholtz equation in an unbounded viscous flow in the form of both linear and 
nonlinear product integrals using the continuous Markov process constructed in the 
previous Section. 

It is known that there is no vorticity production process in unbounded two- 
dimensional flows of a viscous fluid, and the vorticity evolution is determined by the 
interactions between the convection and diffusion process. This fact is confirmed by the 
circulation and momentum conservation theorems expressed in the form (see Leonard 
1980) 

r = Q(x, t )  dx = const, (4.1) 

( 4 4  

s 
s p = Q(x, t ) x d x  = const. 

In the approach developed here, the circulation conservation theorem (4.1) is 
interpreted as the conservation in time of the total number of each type of EVF, or 

4-2 
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there is no EVF production. The momentum conservation theorem (4.2) can be 
interpreted as the conservation in time of the ‘centre of gravity’ of the whole set of 
EVFs if those of y+ type have conditionally mass + 1 and those of y- type have the 
same negative mass. 

4.1. Description of vorticity evolution in the form of a linear product integral 
Assume that some large enough finite number N of EVFs moves according to (3.14), 
and all the assumptions that were made in the derivation (3.10) hold. Then the mean 
value 

is the solution for the Helmholtz equation (3.1) at e+O, d-+O (Eld-tO) with initial 
vorticity of the form 

where xk(t) (k = 1, . . . , N )  are random trajectories of EVFs starting out from the initial 
point xOk, and E,,,,, denotes the mean value all over the samples, the trajectories of 
which start from the point x, at time to, and xo a vector of the form (3.16). Indeed, the 
vorticity evolution (3.29) follows the Helmholtz equation with overwhelming 
probability at large numbers N in every realization of the process (in the limit N +  co 
with probability equal to unity). Therefore, the mathematical expectation (4.3) will also 
be a solution for this equation, when N - t  00. 

Since the averaging functional in (4.3) depends on the coordinate of the last point 
of the trajectory xt, being considered at time interval [to,?], the mathematical 
expectation is determined as follows : 

a(x, t> = p(Y? t, x 0 3  c - c 7 0  8(x-Yk) dY, (4.5) 
J R 2 N  ( k e J C  k e J )  

where p(  y, t, xo, to) is the transition probability density of the continuous Markov 
process (3.14). The densityp(x, t, x,, to) obeys the forward Kolmogorov equation in the 
form 

(4.6) 
aP t + V J P 4  = v Ax P, 

where V, and Ax are the differential operators with respect to X E  RZN, and u is the 
velocity given by (3.16). Then, the functionp(x, t, xo, to)  is the Green’s function for (4.6) 
that is expressed by the product integral (Daletsky 1962) 

(4.7) 

where xl = dx,/dr and 

To evaluate the integral (4.3, introduce the transition probability density 
pk(x, t, xo, to) (k = 1, . . . , N )  of events in which the kth vortex filament arrives at point 
x at time t, if all EVFs are at the point xo at time to, in the form 
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where we use the notation 

dky = dyl...dy,-,dy,+l...dy,, ~(x)k = (~l,...,Ylc-i,X,Yk+i,...,Y~), 

Taking into account (4.8), expression (4.3) can be written as 
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Substituting the product integral (4.7) into (4.8) and then substituting (4.8) into (4.9), 
we obtain 

(4.10) 

In the limiting case c + 0, d+ 0 (c /d+ 0), (4.10) is the product integral determining 
the solution for the Helmholtz equation with initial vorticity (4.4). The main advantage 
of (4.10) is that it is the most simple type of product integral, i.e. linear, which is 
sometimes more convenient for the analytic study. 

4.2. Description of vorticity evolution in the form of a nonlinear product integral 
Let us obtain the solution of the Helmholtz equation based on (3.27) that gives the 
vorticity variance that occurred in a small time step At in one realization of stochastic 
process (3.14). Unlike the previous approach, we shall first take the limit of (3.27) when 
E+O,  d+O (e/d+O). Then, the stochastic term in (3.27) vanishes according to the 
estimates made above, and (3.27) takes the form 

where the velocity field is determined through the Biot-Savart law 

(4.12) 

Relation (4.1 1 )  is a nonlinear integral operator which transforms the vorticity Q(x, t )  
at time t to the vorticity Q(x, t + At) at time t+ At. We denote this operator as ct Q(t). 
As is proved above, the operator ct Q(t)  determines, in the limit as At + 0, the variance 
of the vorticity according to the Helmholtz equation (3.1). 

We shall now determine the vorticity evolution in time interval [to, t]. To this end, we 
take some partition q (to < t, < ... < t ,  < t )  of this time interval and construct a 
sequence of the vorticities at the time instants ti (i = 1 , .  . . , m )  by the recurrent method, 
as the product of integral operators z,-tj-,Q(tj-l) ( j  = 1 ,  . . . , i), o f  the form 

Q,, Ax, ti) = 1. . * I P k  t,, xi-174-1; U(Xi-1’ ti-1)). . . . .P(X,, t,, xo, t o ;  u(x0, to)) Q b O ,  to) 

dxo . . . dxi-,, (4.13) 

and the velocity field u(x, ti) ( 1  < i < rn) is determined by the vorticity Q(x, ti) through 
the Biot-Savart law (4.12). 
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When the intervals of the partition q are very small, i.e. ,m+ 00 and t i + l -  ri+O, 
expression (4.13) transforms to the nonlinear product integral 

(4.15) 

Here, the notation of the nonlinear product integral is taken in accordance with that 
of Maslov (1976), who first introduced this version of the Wiener-Feynman integrals. 
The arrow over the ‘exp’denotes that the evaluation of the products in (4.13) is to be 
made on each following step using the result of the previous one. 

The nonlinear product integral (4.15) is the exact analytic solution of the Cauchy 
problem for the Helmholtz equation (3.1) with the initial vorticity Q(x, to). This 
integral means the sum over all EVF trajectories passing from any point xo to a fixed 
point x during time interval [ to ,  t] so that the contribution of each path X, to the sum 
is proportional to 

where S[x,] is a functional of the form 

exp (- S[x,l/vh 

rt 
(4.16) 

At small kinematic viscosity, the main contribution to the integral (4.15) is made by 
trajectories situated in the neighbourhood of extremal paths for the functional S[x,], 
but the contribution of other paths is negligible. The extremal path, passing through 
points xo and x, gives the minimum value of S[x,] and satisfies the Lagrange equation 
of the form 

This property creates the basis for developing asymptotic methods for evaluation of the 
product integrals (see Feynman & Hibbs 1965; Maslov 1976). 

When L’ = 0, it is necessary to take into account the contribution of the extremal 
paths only, for which S[x,] in (4.16) is exactly equal to zero. Each such path satisfies 
the equation 1, = u(xt, t )  that expresses vortex dynamics of an ideal fluid. Therefore, 
the solution (4.15) for unbounded viscous fluid flows transforms into this one for the 
vortex dynamics of an ideal fluid as v + 0. 

5. Two-dimensional flows of a viscous fluid with boundaries 
Let G(t) be an n+ 1-connected plane domain of a flow bounded by simple non- 

crossing curves S,,(t), Sl(t), ...,Se( t),  and So(?) embraces all the other ones. Let 
G,(t), . . . , GJt) be the inner domains embraced by the circuits S,(t), . . . , S,(t), and 
G,(r) be an external domain relative to the circuit So(t), and, in addition, 
G(t) = Go(?) U G,(t) U . . . U G,(t) is the external domain for a flow. We shall also take 
z,(t) = x(s, t )  + iy(s, t )  as the equation for the circuits in complex parametric form. The 
real variable s here runs consistently round all circuits So(& S,(t), . . . , S,(t). Denote 
S(t)  = So(?) U S,(t)  U . . . U S,(t). Assume also that a finite number of angular points can 
be placed on the circuits and introduce the boundary function a(s, t )  which is equal to 
the angle between two tangents drawn to a contour at some angular point counting 
from the left-hand side of a circuit, and a(s, t )  = n at smooth points of a circuit. 
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w(z, z, t )  = uy + iuz, 
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The velocity field will be then expressed in the complex form 

(5.1) 
where z = x+iy, T= x-iy. The boundary velocity will be expressed in the form 
w,(t) = i dT,(t)/dt. From (2.2) and (2.3), the connection between complex velocity field 
and the vorticity is given by the relation 

aw(z, z, t )  
az = ;a(., z, t). 

Here, the variables (x, y )  are changed to ( z , q  and a/az = $(a/ax-ia/ay), 
a/az = ;@/ax + i a/ay). 

The appearance of moving boundaries in a flow leads to an additional effect, in 
particular to the production of vorticity, besides diffusion and convection. To describe 
this process according to the vortex dynamics concept, it is necessary to reformulate the 
no-slip boundary condition (3.4) in terms of the vorticity. 

5.1. Definition of the no-slip boundary condition in terms of vorticity 
Determine all possible vorticity fields Q(x, t )  in a flow domain at time t for which the 
velocity fields satisfy (3.2E(3.4). Following the theory of Vekua (1952) (see Gakhov 
1967), any continuous complex function f ( z ,  Z, t )  can be expressed in the bounded 
domain G(t) in the form 

where 5 = [ + iq, fs (zs ,  t )  is the boundary value of the function f(z, F, t )  at the point z ,  
of S(t), and the direction of integration along S(t) in the first integral is chosen so that 
the domain G(t) is from the left-hand side. In the limit of z + z ,  in (5.3) at Z E  G(t)  (from 
the side of a flow domain), the application of Sochotzky’s formula for the case of 
angular points on an integrating contour (see Gakhov 1967) gives the following 
integral relation : 

where the contour integral is evaluated in the sense of the principal value. If in (5.3) 
and (5.4) the velocity (5.1) replaces the function f ( z ,  z, t),  and the vorticity replaces 
aw(z, T, t)/azaccording to (5.2), then (5.4) transforms into the integral equation relative 
to the vorticity Q(z, T, t )  at the given boundary velocity ws(z,, t )  

and (5.3) gives the flow velocity w(z, Z, t )  at the prescribed vorticity Q(z,  Z, t )  in the form 

Expression (5.6) generalizes the Biot-Savart law to the case of flows with boundaries. 
Equation (5 .5)  and expression (5.6) solve the problem of reformulating the no-slip 
boundary condition in terms of the vorticity. Note that (5.5) and (5.6) can be 
generalized to the case when the external boundary So(t) is absent and the flow is 
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running from infinity with the velocity w,(t). In these flows, the boundary So(t) is to 
be removed to infinity, and the boundary condition is to be written on it in the form 
w,Is, = wa,(t). As a result, we obtain 

Thus, (5.5) and (5.6) will be used further without loss of generality. 

5.2. Vorticity evolution in flows with bounduries 
The physical pattern of vorticity convection and diffusion based on the stochastic 
motion of EVFs in the continuous Markov process is the same as for unbounded flows. 
However, in this case, it is also necessary to determine the behaviour of all EVFs on 
the boundary S(t)  and to introduce the production of two types of EVFs to satisfy 
(5.5).  The most simple method of satisfying this boundary condition is the construction 
of the generalized Markov process (see Portenko 1982). This process is first 
characterized by its continuation into the outer domain G”(t). In other words, it is 
necessary to allow EVFs to run through boundaries outside a flow domain and to move 
randomly in this domain. This assumption is, of course, not correct from physical point 
of view because flow is absent within outer domains. Since this method does not change 
the Helmholtz equation in the flow domain G(t) and the solution of the problem can 
be written in the more simple analytic form under the given boundary conditions, we 
choose this approach. 

To continue the Markov process into the domains Go(/), G,(t), . . . , G,(t), it is 
necessary to continue the velocity field w ( z , ~ , t )  inside them. In this case, the 
requirement of the solenoidality of a continuous field can be failed. The most simple 
method of continuation is the solution of Dirichlet’s problem Aw = 0 in domains 
Go(t), G,(t), . . . , G,(t) with boundary condition ws(z,, t). Note that (5.8) can be used to 
calculate the velocity field in the whole space, when ws(zs, t )  =: 0. 

To construct the generalized Markov process, the functions u,(x, t), cc(x, r), q,(x, t )  
are to be given in the €-vicinity of boundaries (see (2.6)) describing the reflection of 
EVFs because of their strong motion with the velocity u,(x.t) near surfaces, their 
absorption with the probability density cB(x, t )  and their production on boundaries 
with the intensity qe(x, t ) .  In this connection, the function q(s I ) ,  

lim 4,(x, 0 = q(s, 0 &&), 
€+O 

can be either positive or negative. If q(s, t) > 0 at some boundary point, then EVFs of 
intensities y+ are produced, but if q(s, t )  < 0,  the intensity of vortices produced will be 
Y-- 

To satisfy (54, only the process of vorticity production on boundaries is of 
importance, and the choice of u,(x, t )  and c,(x, t )  (reflection and absorption) can be, to 
some extent, arbitrary. However, the vortex production intensity depends on a 
reflection and an absorption. From an analytical point of view, the most simple 
generalized Markov process will be such that there will be no reflection and an 
absorption, and EVFs could cross boundaries freely. We consider just this case. 

Let the concentrations of both types of EVFs be given in the whole space at time t 
so that the vorticity a(x,t), determined by (3.10), satisfies (5 .5)  at the boundary 
velocity u,(t). In addition, the velocity field u(x,  t )  is found using (5.6) within the flow 
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domain G(t) and is calculated by appropriate continuation of the velocity field (5.6) in 
the external domain G“(t). In a small time interval [t ,  t+ At] each EVF moves with local 
velocity u(x, t )  independently of the others according to (3.14). Therefore, the vorticity 
Q’(x, t + A t ) ,  created by these EVFs in the whole space at time ? + A t ,  is calculated as 

(5.9) 

wherep(x, t + At, y ,  t ;  u(y ,  t ) )  is given by (4.14). The new vorticity Q’(x, t+ At)  does not 
satisfy (5.5) at time ? + A t .  Then a number of EVFs of both types with total intensity 
q(s, t )  At will be produced on boundaries at the time interval [t, t + At] .  These filaments 
will diffuse and create some vorticity at time ? + A t  of the form 

L”’(x, t + At)  = p ( x ,  t + At,  y, ,  t ; u(yS, t ) )  d s ,  0 At dS,. (5.10) 
k t )  

Then the total vorticity in a flow at the time t + A t  is the sum (5.9) and (5.10): 

J R~ 

p(x,t+At,y,,t;u(y,,t))q(s,t)AtdS,. (5.11) 

The intensity q(s,t) is to be chosen so that the vorticity Q ( x , t + A t )  (5.11) would 
satisfy (5.5) with boundary velocity us(?+ At)  at time ? + A t .  Therefore, q(s, t )  depends 
on Q(x, t ) ,  u,(t) ,  and u,(t+ At).  Note that the dependence of q(s, t )  on the boundary 
velocity u,(t + At)  at time t + At expresses the influence of the boundary acceleration at 
time t on this quantity. Expression (5.11) gives an iterative method for the transition 
from Q(x, t )  to Q(x, t+ At),  when this dependence is established. 

Using expansion (3.28) of the integral (5.9) and an expression of the form 

we find that the vorticity evolution satisfies, in the limit At+O, the equation 

asz -+ V*(uQ) = v AQ + q(s, t )  S,(X). 
at 

(5.12) 

(5.13) 

In the following time intervals [t  + k At, t + (k + 1) At] ( k  = 1,2, . . .), this process must 
be repeated. Successive application of the nonlinear integral operator (5.1 1) to the 
initial vorticity allows, by analogy with (4.13), the vorticity Q(x, t o + k A t )  to be 
expressed through Q(x, to) and the nonlinear product integral at At + 0, k+ 00 

(k At  = T = const) to be obtained in the form 

x ( t ) = x  

Dx(t)Q(x(t,),  Ix,, -u(x,, ?)I’d7 s Q(x, t )  = 

+ lo d7 [ ( t ) = x  

where u(x, t )  is calculated through Q(x, t )  by (5.6) in the flow domain G(t)  and by non- 
stop continuation into G(t) at every time instant. 
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The nonlinear product integral (5.14) is the solution of the Cauchy problem for 
equation (5.13). This equation transforms into the Helmholtz equation (3.1) in the flow 
domain G(t), and the conditions (3.2)-(3.4) are satisfied by the definitions of u(x, t )  and 
q(s, t). Thus, it is proved that PIM can be used to simulate the vortex dynamics of a 
viscous fluid with moving boundaries in a flow. In our calculations, not reproduced 
here, the convergence of product integrals (4.15) and (5.14) is proved under wide 
assumptions. 

5.3. An equation Jor the intensity of boundary vortex production 
We now determine the dependence of the vortex production intensity q(s,t) on the 
vorticity in a flow, together with the boundary velocity and boundary acceleration. 
Assuming that the vorticity Q(x, t )  satisfies the condition (5.5) with boundary velocity 
w,(t) at time t ,  we write (5.5) at time t + A t  with known boundary velocity w,(t+At) ,  
substituting Q(x, t + At)  accordingly (5.11). Linearizing the expression obtained with 
respect to At, we find an equation for the unknown intensity q(s, t )  in the form 

where the following notation is introduced : 

wS(zs, t + At) + - a(z,, t + At)  
2n: 

A(z,, t + At) = - 

qAt(Zs7 t ,  
2n(z,, t + At) ' q&, t )  = q(s, t> At .  4 A t ( Z s ,  = (5.17) 

Here, n(z,, t + A t )  = n, +in, is the inward complex normal to the boundary S ( t + A t )  
relatively to the flow domain G(t  + At),  and ct Q(t ,  5 , ~ )  denotes the right-hand side 
of (5.9). 

The term A(zs,  t+ At)  in equation (5.15), determined by (5.161, represents the velocity 
imbalance induced by the vorticity (5.9) on the boundary S(t -k At)  at time t + At. The 
other terms in (5.15) determine the velocity induced on the boundary S ( t + A t )  by the 
EVFs produced during the time interval [ t ,  t + At] that compensates the imbalance 
A(zs,  t + At)  that arises. 

The solution of (5.15) is to be determined under the condition 

Im [ q A t ( z s ,  t> 4 z S ,  t + A01 = 0, (5.18) 

which means that the intensity q(s, t ) ,  expressed by (5.17) through qAt(zs, t),  is the real 
function of boundary points. Also, it is necessary to demand that the function q(s, t )  
is single-valued. 

However, these last two demands do not ensure the uniqueness of a solution of the 
integral equation (5.15). It will be shown later that the solution of (5.15) depends on 
n real arbitrary constants under the conditions (5.18). For any choice of these 
constants, the vortex production intensity q(s, t )  requires tha.t the expression (5.11) 
satisfies the Helmholtz equation (3.1) and the no-slip conditions in the form (5.5). In 
other words, the solution of the Helmholtz equation in a plane flow is not unique under 
the no-slip conditions on moving boundaries. 
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FIGURE 3. The condition of the pressure univalent representation is described as the zero value of the 
contour integral from the pressure gradient around an arbitrary contour C ;  S is the boundary of a 
body in the flow, n is the inward unit normal vector relative to the flow and a is the angle between 
two tangents at an angular point of the boundary. 

This connected with a mathematical problem arising when the transition is made 
from Navier-Stokes equations to the Helmholtz equation. To calculate the pressure 
from the Navier-Stokes equations after determining the velocity from the Helmholtz 
equation, it is necessary to integrate the single-valued pressure gradient. However, in 
a multi-connected flow domain such integration can lead to a multi-valued pressure. 
This many-valued pressure vanishes at the transition from the Navier-Stokes equations 
to the Helmholtz equation initiating, however, the non-uniqueness of solutions of the 
latter. Therefore, from the mathematical point of view the Navier-Stokes and the 
Helmholtz equations do not have a unique solution without some additional 
restrictions on the pressure. From the physical standpoint the pressure is a single- 
valued function, hence some additional conditions must be put on the solution for the 
Helmholtz equation. These conditions are to be formulated on the intensity of 
boundary vortex production, which allows (5.15) to be solved by the only way. 

The condition of a single-valued pressure can be written in a multi-connected flow 
domain in accordance with the Navier-Stokes equations in an inconpressible fluid in 
the form of n contour integrals as 

$ci$+Q(e, x u ) - v A u  dx = 0, k = 1 ,..., n, (5.19) 

where C, is an arbitrary contour in the flow domain which embraces the boundary 
S,(t) (see figure 3). Using the Stokes formula and the representation of the simple layer, 
6,(x), in the form (5.12), the contour integrals (5.19) can be reduced due to (5.13) to 
integrating along the boundaries S,(t), k = 1, . . . , n : 

(5.20) 

Using the initial assumptions about the continuation of the stochastic process beyond 
a flow domain and the definitions of qdt(zs, t) and ztL?(t), these conditions can be 
written in the form of differentials at small time step At as 
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These conditions mean that the total intensity of EVFs produced on every circuit S,(t) 
and arriving in a flow domain in time interval [ t ,  t + At],  as expressed by the right-hand 
side of (5.21), is equal to the sum of the variation of the total EVF intensity in the 
domain Gk(t) and the variation of the circulation 

vs(t)dx 
S k ( t )  

in the same time interval. 

the requirement that the function ijAt(z,, t) is single-valued. 
Thus, the solution of (5.15) is to be found under conditions (5.18) and (5.21), with 

5.4. Determination of the intensity of boundary vortex production 

Let us introduce the new unknown function of boundary points 

$(zs )  = %t(zs, t>+ ws(zs,  t + A t ) .  (5.22) 

Then (5.15) takes the form 

d< = - B(z,, t + At),  (5.23) 
- a(zs, t + At) 

27t 

where B(zs, t + At) is the boundary value of the analytic function in the domain G"(t + At) 
given as 

(5.24a) 

If the external boundary S,, is absent, then the function B(z,  t + Az) has the form 

B(z,  t + A t )  = - " n(t' '' d5dy + W,,( t  + At). (5.24 b) 

The additional term w,(t + At) arises due to the evaluation of the contour integral in 
(5.16) along the infinite circuit S,,. 

From the analytic functions theory, Sochotzky's formula arid (5.23) it follows that 
in the domain e ( t + A t )  we have 

4(!3 B(z , t+At )  = -- s -d<. 
27t1 S ( t + A t )  S-' 

(5.25) 

Thus, the problem of a solution for (5.23) reduces to the well-known one in which a 
given analytic function B(z, t + A t )  is expressed by the Cauchy's integral in G"(t+At) 
(see Gakhov 1967). 

The solution of this problem can be presented in the form 

#(zs> = W z s ,  t + At> + Q(z,, t + At),  (5.26) 

where Q(z,,  t+At )  is the boundary value of a single-valued analytic function which is 
given by the same integral (5.25), but in a multi-connected flow domain G(t+At) .  
Expressing ljAt(zs, t )  from (5.22), where r$(zs) is determined by (5.26), and substituting 
ljAt(zs, t )  into (5.18), we obtain the Hilbert boundary condition for Q(z,  t+At )  on the 
boundary S(t + At) : 

Im [Q(z, t + At) n(z,, t + At)] = Im [( - B(z,, t + At) + wS(zs, t -t At)) n(z,, t+ At)] .  
(5.27) 
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If a solution of the Hilbert problem (5.27) is known, then the solution of (5.15) can be 
written as 

q A t ( Z s ,  t )  = 2n(zs, t + At)(Q(z,, t + At)  + B(z,, t + At) - w,(z,, t + At)).  (5.28) 

The term qAt(zs, t) ,  constructed in (5.28), is a single-valued function of boundary points 
satisfying (5 .18) ,  but it has to satisfy the conditions (5.21) also. Thus, the problem of 
the determination of the intensity qAt(zs,t) reduces to the solution of the Hilbert 
problem (5.27) in the multi-connected domain G(t + At) under n conditions (5.21). 

The solution of the inhomogeneous Hilbert problem (5.27), according to general 
theory (see Gakhov 1967), depends on n arbitrary real constants as the index of the 
complex normal n(zs, t + A t )  on the boundary S ( t + A t )  is equal to 1 -n .  These 
constants are to be determined from n conditions (5.21), and the intensity (5.28) is, 
thereby, calculated by the only way. The Hilbert problem (5.27) has a hydrodynamic 
interpretation in the framework of the dynamics of an ideal fluid that permits an 
analytic form of the solution to be written in the most simple way and, on the other 
hand, gives the physical interpretation of the solution (5.28) for the intensity q&,, t). 

In this interpretation, (5.27) is the no-flow condition on the boundary S( t+At) ,  
which moves with velocity ws(zs, t + At) in an ideal flow having vorticity zt Q(t)  in 
G(t + At).  So, B(z, t + At),  determined by (5.24) in G(t + At),  is interpreted as a complex 
velocity in the form (5.1), created by the vorticity G,Q(t) accordingly to the 
Biot-Savart law, and Q(z, t+ At) is the complex velocity of potential incompressible 
flow in G(t+At) ,  which is to be added to the velocity B(z, t + A t )  to satisfy the no-flow 
boundary condition (5.27). 

The potential of the velocity Q(z, t+ At) is an analytic function in the flow domain 
G(t + A t ) .  However, it can be a multi-valued function in the case of a multi-connected 
domain that corresponds with circulation flows around the circuits Sk(t + At) 
(k  = 1, . . . , n) in an ideal fluid with the velocity B(z, t + At) + Q(z, t + At).  Therefore, the 
unknown single-valued velocity Q(z, t + At)  can be written in the form 

(5.29) 

where @(z) is an unknown real harmonic function in G ( t + A t ) ,  z, are some arbitrary 
fixed points in the domains G,( t+At)  and 4 are some circulations around the circuits 
S,( t+At) .  Substituting (5.29) into (5.27), we obtain the boundary condition for the 
potential @(z) as 

1 = Im[(-B(z,,r+At)+w,(z,, t + A t ) -  5 ‘ n(z,, t + A t ) ] .  
an S(t+At) k=l2% - Zk,> 

(5.30) 

Thus, the determination of the potential @(z) consists in solving the Neuman 
problem for Laplace’s equation in the domain G ( t + A t ) .  This problem is known 
(Courant & Hilbert 1953) to have a unique solution in any domain that can be 
expressed through the Green’s function H(z, 9 in the form 

@(z) = 
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Note that the solvability condition for the problem (5.30), in the case of finite flow 
domain, is the natural condition that total flow volume is maintained in time. 
Substituting this expression into (5.29), we obtain the solution for the Hilbert problem 
(5.27) as follows: 

Q(z, t + A t )  = $ 2 i m { I m [ (  - B ( S , t + A t ) + w , ( ~ , t + A t )  
S(t+At)  

This solution depends on n arbitrary constants 4 which are to be determined by the 
substitution (5.28), where Q(z, t + A t )  is given by (5.31), into n contour integrals (5.21). 
Direct calculations, using the analytical properties of the functions B(z, t + At)  and 
H(z, 0, give the following expression for these constants: 

qt Q(O dx - JIG,,,, Q(O dx - (5.32) 

Substituting (5.32) into (5.31) and then into (5.28), we obtain the solution of (5.15) 
satisfying (5.18) and (5.21) as 

= I I G k ( t + A t )  

. awz , ,  0 qAt(Zsr t )  = 2n(zs, t + At)  B(zs, t + At)  - wS(z,, t + At)  + $ 21-- 
S(t+At)  

x {Im [(-I?(<, t + At)  + w,(Q t + At))  n(c, t + At) ] }  ds, 

(5.33) 

where B(zs, t+ At)  is given by (5.24). Note that the intensity qAt(zs, t )  in (5.33) can have 
integrable singularities at angular points of circuits. 

Taking into account the hydrodynamic interpretation of B(z, t + At)  and Q(z, t + At),  
we obtain that the intensity (5.33) of EVFs produced on the boundary S(t)  in the time 
interval [t ,  t + A t ]  is equal to double the relative tangent velocity that appears on the 
boundary S(t+ At)  at time t+ At in an ideal flow, having vorticity ct Q(t)  and 
circulations (5.32) around circuits Sk(t + A t )  and satisfying no-flow boundary 
conditions on these circuits moving with boundary velocity ws(zs, t+ At).  If the external 
boundary So is absent, then this ideal flow has the velocity w,(t+At)  at infinity. This 
hydrodynamic sense of the intensity qAt(zs, t )  is helpful to use in numerical simulations 
of vorticity evolution. Note that the mathematical expression for the intensity qAt(Zs, t )  
and its hydrodynamic sense consequently have to be changed on the introduction of 
the absorbing and reflecting EVFs at boundaries. 

As a result, substituting (5.33) into the product integral (5.14), we find that the vortex 
dynamics of a viscous fluid with moving boundaries within a flow is unambiguously 
described by the nonlinear product integral. 

To calculate the intensity qAt(zs, t )  from (5.33), it is necessary to know an analytic 
expression of the Green's function H(z,Q. This can be illustrated by two examples. 
The first one is a fluid flow past a body. Let O(z, t )  be the conformal map of the flow 
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domain G(t) into the interior of the circle 101 2 1. Then the solution of (5.33) can 
be written in the form 

1 O(<, t + At)  + S(z,, t + At) 
Im [w,(Q t + At) n(<, t + At)] ds, O(<, t + At) - 8(zs, t + At) 

- 

- 2 Re [ws(zs, t + At) n(zs, t + At)]. 

The second case is the flow within the singly connected domain G(t), and B(z, t )  here 
denotes the conformal map of the flow domain within the circle 101 < 1. The solution 
of (5.33) can be written as 

- 2 Re [ws(zs, t + At) n(zs, t + At)]. 

5.5. The vortex dynamics theorem for af low with moving boundaries 
Let us derive the vortex dynamics theorem for viscous fluid flows with moving 
boundaries. Using (5.33) one can prove by direct calculations the following relation: 

(5.34) 

As the intensity qAt(Zs, t )  in (5.33) satisfies (5.20) on each of inner boundaries, from 
(5.34) it follows that (5.20) is satisfied on the external boundary So(t), if it is in a flow, 
in the same form: 

(5.35) 

By analogy to (5.21) this condition can be rewritten as 

Relation (5.35) can be obtained in the same way as for the derivation of (5.20). 
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However, it cannot be considered as an independent condition on the solution for 
(5.15), as it depends on (5.20). 

Summing relations (5.21) for all k and (5.36) and using 

following (5.13), we obtain after transformations 

v,(t -t At)  dx - ~ , ( t )  dx + o(At).  

(5.37) 

Thus, the variance of total vortex circulation in time is connected with the spins of 
bodies in the flow and is determined by the variance of circulation $,,,, v(t) dx in time. 

As a result, we obtain the generalization of the circulation conservation theorem 
(4.1) to the case of a flow with boundaries in the form 

S ( t )  i S ( t + A t )  i Q(x, t + At)  dx - SS,,,) Q(x7 t> dx = Ss,,,,,,) 

j L t i  O(x, t )  dx -is,,, v,(t) dx = const. 

Note that the variance of the integral (4.2) in time connects with forces influencing 
bodies placed in a flow (see Vladimirov 1977). 

6.  Conclusions 
A complete theory of the vortex dynamics in two-dimensional flows of a viscous 

incompressible medium is given in this work based on the application of the product- 
integral method. As a result, the Cauchy problem is analytically solved for the quasi- 
linear Helmholtz equation in the form of product integrals in both unbounded and 
bounded flows under the no-slip boundary condition. The application of the product- 
integral method allows, by the most natural way, a generalization of the vortex 
dynamics concept in ideal fluids to the case of viscous flows, but the standard concepts 
in vortex theory must, however, be reconsidered. Elementary vortex objects are defined 
as two types of singular vortex filaments with equal but opposite intensities. The 
vorticity is considered as the macro-value being proportional to the concentration of 
elementary vortex filaments inhabiting the micro-level. The vortex motion of a viscous 
medium is represented as the stochastic motion of an infinite set of elementary vortex 
filaments on the micro-level governed by the stochastic differential equations, where 
the stochastic velocity component of each filament simulates the vorticity viscous 
diffusion, and the regular component is, however, the macro-value induced according 
to the Biot-Savart law and simulates the vorticity convective process. Also, the 
elementary vortex filaments are produced on flow boundaries to satisfy the no-slip 
condition. 

This new approach and the analytic solution to the Helmholtz equation in the form 
of the product integral have obvious advantages. First, the product integration allows 
the calculation of the evolution of vorticity from its own initial field without any 
additional assumptions or other information about a flow. Secondly, the no-slip 
boundary condition is satisfied in a natural way and the laws of vortex production on 
boundaries are described exactly using the same technique of product integration. Note 
that there are considerable difficulties in other vortex methods in satisfying the no-slip 
condition. In particular, in Chorin’s numerical method, the boundary-layer equations 
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have to be solved to describe the vortex production on boundaries, which are not valid 
in some flow domains. The application of product integration includes the boundary 
of the flow in a natural way, and it is free from the shortcomings mentioned. Third, 
both analytic and approximate methods of the evaluation of product integrals are the 
subject of active investigations in contemporary mathematics. Also, there are effective 
numerical methods to evaluate product integrals directly which are not connected with 
applying the random walks technique. Therefore, the advanced theory of vortex 
dynamics in a viscous fluid flows allows the construction of effective and correct 
techniques to calculate flows of practical interest. 

It should be noted that the method, developed in this work for incompressible 
viscous flows, can be generalized to the compressible viscous case. Indeed, the vortex 
dynamics of two-dimensional compressible viscous flows is described by an equation 
of the form (3.1) on the assumption that the kinematic viscosity v is constant. However, 
the term V.(uS2) replaces (u.V)Q in the compressible Helmholtz equation, and there 
is a term of the form (VT x V S ) ,  from temperature-entropy inhomogenities of a flow. 
The main difference between compressible and incompressible flows consists in the fact 
that vorticity does not determine the velocity field uniquely. In the compressible case, 
the velocity has to be represented in the form u = ug + Vq5, where uQ is the solenoidal 
part of the velocity field which is determined by the vorticity through the Biot-Savart 
law, and Vq5 is the potential velocity introduced by the compressibility. In this instance, 
additional information should be obtained about the compressible potential, q5, and the 
temperature-entropy inhomogenities of the flow to determine the vortex field 
evolution. It can only be obtained from a solution of the full set of gas dynamics 
equations. Nevertheless, assume that the potential q5, temperature and entropy are 
given. Then, the vortex model constructed in this work is generalized to the case of 
compressible media by adding the convective velocity of the form V $  in (3.14) and 
introducing the volume production of elementary vortex filaments with the intensity 
( V T x  V S ) ,  as macro-values. Then the vorticity evolution is determined by an 
expression of the form (5.11) in a small time step, where the surface integral 
is to be replaced by the volume integral of the same form with intensity 
q(x, t )  = ( V T x  VS),+q, S,(x). As a result, we obtain an equation of the form (5.13) in 
which there will be terms of the form V-(us2) and ( V T x  VS),. This way, the vorticity 
evolution follows the Helmholtz equation in a compressible medium. 

Developing some of the above ideas, we have constructed the vortex dynamics in 
three-dimensional viscous fluid flows, that we shall publish in Part 2 of this work. 
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